OCR Maths FP1 Topic Questions from Papers Summation of Series Answers

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com

	1	$6\Sigma r^2 + 2\Sigma r + \Sigma 1$	M1		Consider the sum of three separate terms
PMT		$6\Sigma r^2 = n(n+1)(2n+1)$	A1		Correct formula stated
		$2\Sigma r = n(n+1)$	A1		Correct formula stated
		$\Sigma 1 = n$	A1		Correct term seen
		$n(2n^2 + 4n + 3)$ x	M1	6	Correct algebraic processes including factorisation and simplification
			A1	6	Obtain given answer correctly
					x (Q1±June 2005)

(Q1,[±]June 2005)

2	2	M1		Show correct process for subtracting fractions
2	(i) $\frac{(r+1) - r(r+2)}{(r+2)(r+1)} = \frac{1}{(r+1)(r+2)}$	A1	2	Obtain given answer correctly
	(ii) EITHER $\frac{2}{3} - \frac{1}{2} + \frac{3}{4} - \frac{2}{3} \dots \frac{n+1}{n+2} - \frac{n}{n+1}$ $\frac{n+1}{n+2} - \frac{1}{2}$	M1 A1 M1 A1	4	Express terms as differences using (i) At least first two and last term correct Show or imply that pairs of terms cancel Obtain correct answer in any form
	OR 	M2 A1A1 B1 ft	1 7	State that $\sum_{r=1}^{n} u_r = f(n + 1) - f(1)$ Each term correct Obtain value from their sum to <i>n</i> terms

(Q5, June 2005)

3	$8\Sigma r^3 - 6\Sigma r^2 + 2\Sigma r$		M1		Consider the sum of three separate terms]
	$8\Sigma r^3 = 2n^2(n+1)^2$		A1		Correct formula stated or used a.e.f.	
	$6\Sigma r^2 = n(n+1)(2n+1)$		A1		Correct formula stated or used a.e.f.	
	$2\Sigma r = n(n+1)$		A1		Correct term seen	
	$2n^{3}(n+1)$	AG	M1 A1	6 6	Attempt to factorise or expand and simplify Obtain given answer correctly	

1T

4	(i) $\frac{r+2-r}{2}$	M1		Show correct process for subtracting fractions
	r(r + 2)			
		A1	2	Obtain given answer correctly
	r(r+2) AG			
	(ii)	M1		Express terms as differences using (i)
		M1		Express 1 st 3 (or last 3) terms so that cancelling occurs
		A1		Obtain $1 + \frac{1}{2}$
		A1		Obtain $-\frac{1}{n+2}$, $-\frac{1}{n+1}$
	$\frac{3}{2} - \frac{1}{n+1} - \frac{1}{n+2}$	A1	5	Obtain correct answer in any form
	(iii) (a) $\frac{3}{2}$	B1ft	1	Obtain value from their sum to <i>n</i> terms
	(b) $\frac{1}{n+1} + \frac{1}{n+2}$	M1	2	Using (iii) (a) – (ii) or method of differences again [$n \rightarrow \infty$ is a method error] Obtain answer in any form
		ALI	∠ 10	,

MΤ

γ

(Q9, Jan 2006)

5	$\Sigma r_{n}^{3} + \Sigma r^{2}$	M1		Consider the sum as two separate parts α
	$\Sigma r^{2} = \frac{1}{\sqrt{6}} n(n+1)(2n+1)$	A1		Correct formula stated
	$\Sigma r^{3} = \frac{1}{4}n^{2}(n+1)^{2}$	A1		Correct formula stated
	$\frac{1}{12}n(n+\underline{1})(n+2)(3n+1)$	M1 A1	5	Attempt to factorise and simplify or expand both expressions Obtain given answer correctly or complete verification
			5	$\alpha\beta$ $\beta\gamma$ $\gamma\alpha$

(Q4, June 2006)

PhysicsAndMathsTutor.com

±

(Q9, June 2006)

	M1		Expand to obtain $r^3 - r$
	M1		Consider difference of two standard results
$\frac{1}{4}n^2(n+1)^2 - \frac{1}{2}n(n+1)$	A1		Obtain correct unfactorised answer
	M1		Attempt to factorise
	A1		Obtain factor of $\frac{1}{4}n(n+1)$
$\frac{1}{4}n(n-1)(n+1)(n+2)$	A1	6	Obtain correct answer
		6	
	$\frac{1}{4}n^{2}(n+1)^{2} - \frac{1}{2}n(n+1)$ $\frac{1}{4}n(n-1)(n+1)(n+2)$	M1 $M1$ $M1$ $A1$ $M1$ $A1$ $M1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ A	$ \begin{array}{c c} M1 \\ M1 \\ M1 \\ A1 \\ M1 \\ A1 \\ M1 \\ A1 \\ A$

(Q3, Jan 2007)

8	(i)	M1		Factor of $r!$ or $(r + 1)!$ seen
		A1		Factor of $(r+1)$ found
	$(r+1)^2 r!$	A1	3	Obtain given answer correctly
	(ii)	M1		Express terms as differences using
		A1		(i)
		M1	±	At least 1 st two and last term correct
	(n+2)! - 2!	A1	4	Show that pairs of terms cancel
	(iii)	B1ft	1	Obtain correct answer in any form
	_		8	Convincing statement for non- converging, ft their (ii)

—

PMT

(Q8, Jan 2007)

9	$3\Sigma r^2 - 3\Sigma r + \Sigma 1$	M1		Consider the sum of three separate terms
	$3\Sigma r^{2} = \frac{1}{2}n(n+1)(2n+1)$	A1		Correct formula stated
	$3\Sigma r = \frac{3}{2}n(n+1)$	A1		Correct formula stated
	$\sum_{n^{3}} 1 = n$	A1 M1 A1	6	Correct term seen Attempt to simplify Obtain given answer correctly
			6	

(Q3, June 2007)

10(i)
$$\frac{1}{r(r+1)}$$
B11Show correct process to obtain given
result(ii) $1 - \frac{1}{n+1}$ M1M1Express terms as differences using (i)
Show that terms cancel
Obtain correct answer, must be *n* not
any other letter(iii) $S_{\infty} = 1$ B1ft3 $\frac{1}{n+1}$ A1 c.a.o.State correct value of sum to infinity
Ft their (ii)Use sum to infinity – their (ii)3To be a sum to infinity – their (iii)3To be a sum to infinity – their (iii)

 $\alpha \quad \beta \quad \gamma \quad \alpha \beta \quad \beta \gamma \quad \gamma \alpha =$

(Q5, June 2007)

PhysicsAndMathsTutor.com

МΤ	11	$\frac{a}{6}n(n+1)(2n+1) + bn$	M1 A1		Consider sum as two separate parts Correct answer a.e.f.	
ΡMT		$a = 6 \ b = -3$	M1 A1 A1	5 5	Compare co-efficients Obtain correct answers	

⁽Q2, Jan 2008)

		T		
12	(i)	M1		Attempt to combine 3 fractions
		A1	2	Obtain given answer correctly $\alpha + \beta + \gamma$
	(ii)	M1		Express at least first 3 terms using (i)
		Al		All terms correct
		M1		Express at least last 2 terms using (i)
		A1		All terms correct in terms of <i>n</i>
		M1		Show that correct terms cancel
	$2 + 1 - \frac{1}{2} - \frac{2}{n+1}$	$-\frac{1}{n+2}$ A1	6	Obtain unsimplified correct answer
	(iii) $\frac{5}{2}$	P1ft	1	Obtain correct answer from their (ii)
	2	BIII	1	Obtain correct answer from their (ii)
	(iv) $\frac{2}{N+1} + \frac{1}{N+2} = \frac{7}{10}$	B1ft		Their (iii) – their (ii)
	$7N^2 - 9N -$	36 = 0 M1		Attempt to clear fractions & solve equation,
		50-0		Obtain correct simplified equation
	N - 2	A1		Obtain only the correct answer
	N = 3	A1	4	
	(,)		13	

(Q10, Jan 2008)

13 (i)	$\frac{r}{(r+1)!}$	M1	Common denominator of $(r + 1)!$ or $r!(r + 1)!$
		A1 2	Obtain given answer correctly
(ii)	$1 - \frac{1}{(n+1)!}$	M1	Express terms as differences using (i)
		A1	At least 1 st two and last term correct
		M1	Show pairs cancelling
		A1 4	Correct answer a.e.f.

(Q3, June 2008)

4		M1 M1	Express as difference of two series Use standard results
	$\frac{1}{4}n^2(n+1)^2 - \frac{1}{6}n(n+1)(2n+1)$	A1	Correct unsimplified answer
		M1 A1	Attempt to factorise At least factor of $n(n + 1)$
	$\frac{1}{12}n(n+1)(3n+2)(n-1)$	A1	Obtain correct answer
	12	6	

(Q5, June 2008)

				lpha eta
15		M1		Express as sum of 3 terms
	$n^{2}(n+1)^{2} + n(n+1)(2n+1) + n(n+1)$	A1		2 correct unsimplified terms
		A1		3 rd correct unsimplified term
	$(1)^2 (1)^2$	M1		Attempt to factorise
	$n(n+1)^{-}(n+2)$	A1ft		Two factors found, ft their quartic
	αβαβαβ	A1	6	Correct final answer a.e.f.
			6	

(Q3, Jan 2009)

16	(i)	M1		Use correct denominator
		A1	2	Obtain given answer correctly \times
	(ii)	M1		Express terms as differences using (i)
		M1		Do this for at least 1 st 3 terms
		A1		First 3 terms all correct
		A1		Last 3 terms all correct (in terms or <i>n</i> or <i>r</i>)
	$1 + \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2}$	M1		Show pairs cancelling
	3 2n-1 2n+1	A1	6	Obtain correct answer, a.e.f.(in terms of n)
	(iii) $\frac{4}{3}$	B1ft	1 9	Given answer deduced correctly, ft their (ii)

(Q9, Jan 2009)

17	984390625 - 25502500 = 958888125	B1 M1 A1	3 3	State correct value of S_{250} or S_{100} Subtract $S_{250} - S_{100}$ (or S_{101} or S_{99}) Obtain correct exact answer
----	----------------------------------	----------------	---------------	--

(Q1, June 2009)

MΤ

18	(i)	M1 A1	2	Show that terms cancel in pairs Obtain given answer correctly
	(ii)	M1 A1	2	Attempt to expand and simplify Obtain given answer correctly
	(iii)	B1 B1		Correct $\sum r$ stated $\sum 1 = n$
		M1* *DM1		Consider sum of 4 separate terms on RHS Required sum is LHS – 3 terms
	$(n+1)^4 - 1 - n(n+1)(2n+1) - 2n(n+1) - n$	A1		Correct unsimplified expression
	$4\sum_{r=1}^{n} r^{3} = n^{2} (n+1)^{2}$	A1	6 10	Obtain given answer correctly

19

(Q7, June 2009)

Σ

	M1 M1	Express as sum of three series Use standard results
$\frac{1}{4}n^2(n+1)^2 - \frac{1}{6}n(n+1)(2n+1) - n(n+1)$	A1	Obtain correct unsimplified answer
	M1 A1	Attempt to factorise Obtain at least factor of $n(n+1)$
$\frac{1}{12}n(n+1)(n+2)(3n-7)$	A1 6	Obtain fully factorised correct answer
	6	

(Q4, Jan 2010)

20 (i)		B1	1	Obtain given answer correctly
(ii)		M1		Express at least 1 st two and last term using (i)
		A1 M1		All terms correct
	1	IVI I		Show that correct terms cancer
	$1 - \frac{1}{\left(n+1\right)^2}$	A1	4	Obtain correct answer, in terms of n
(iii) $\frac{1}{4}$	B1		Sum to infinity seen or implied
		B1	2	Obtain correct answer
		7		S.C. - ³ / ₄ scores B1

21	Either	M1 M1	Express as a sum of 3 terms Use standard sum results
	$\frac{2}{3}n(n+1)(2n+1) - 2n(n+1) + n$	A1	Correct unsimplified answer
	$\frac{1}{3}n(2n-1)(2n+1)$	M1 A1 A1 6	Attempt to factorise Obtain at least factor of <i>n</i> and a quadratic Obtain correct answer a.e.f.
	$\frac{\partial r}{\sum_{n=1}^{2n}r^2-4\sum_{n=1}^{n}r^2}$	M1	Express as difference of 2 $\sum r^2$ series
	$\frac{1}{6} \times 2n(2n+1)(4n+1) - 4 \times \frac{1}{6}n(n+1)(2n+1)$ $\frac{1}{3}n(2n-1)(2n+1)$	M1 M1	Use standard result
		A1 M1 A1	Correct unsimplified answer Attempt to factorise Obtain at least factor of <i>n</i>
		A1	Obtain correct answer
		6	
			(Q3, June 2010)

PMT

22 (i)		M1 A1	2	Attempt to rationalise denominator or cross multiply Obtain given answer correctly
(ii) $\frac{1}{2}(\sqrt{r})$	$\overline{n+2} + \sqrt{n+1} - \sqrt{2} - 1$	M1 M1 A1 A1 M1 A1	6	Express terms as differences using (i) Attempt this for at least 1^{st} three terms 1^{st} three terms all correct Last two terms all correct Show pairs cancelling Obtain correct answer, in terms of <i>n</i>
(iii)		B1	1 9	Sensible statement for divergence

(Q8, June 2010)

23	Either	B1	Correct value for $\sum r$ stated or used
		M1	Express as sum of two series $\alpha \beta$
	$\frac{a}{4}n^2(n+1)^2 + \frac{bn}{2}(n+1)$	A1	Obtain correct unsimplified answer
		M1	Compare coefficients or substitute value for n
	a = 4 b = -4 Or	A1 A1 6	Obtain correct answers
		M1	Use 2 values for <i>n</i>
	a+b=0 4a+b=12	A1 A1	Obtain correct equations
		M1	Solve simultaneous equations
	a = 4 $b = -4$	A1 A1	Obtain correct answers
		6	

24 (i)	M1 A1 2	Use correct denominator Obtain given answer correctly
(ii)	M1 M1	Express terms as differences using (i)
	A1 A1	First 3 terms all correct Last 2 terms all correct
$\frac{1}{2} - \frac{1}{n+1} + \frac{1}{n+2}$	M1	Show relevant cancelling
$\Sigma $ $n \pm 1$ $n \pm 2$	A1 6	Obtain correct answer a.e.f.
(iii) $\frac{1}{2}$	B1ft	S_{∞} stated or start at $n + 1$ as in (ii)
$\frac{1}{n+1} - \frac{1}{n+2}$	M1	S_∞ - their (ii) or show correct cancelling
$\frac{1}{(n+1)(n+2)}$	A1 3	Obtain given answer correctly
	11	

(Q10, Jan 2011)

25	$3 \times \frac{1}{6} \times 2n(2n+1)(4n+1) - \frac{1}{2} \times 2n$ $2n^2(4n+3)$	M1 A1 A1 M1 A2	6	Express as sum of two series Each term correct a.e.f. Attempt to factorise Completely correct answer, (A1 if one factor not found)
		6		(A1 if one factor not found)

(Q4, June 2011)

26 (i)	B1 1 Obtain given answer correctly
(ii)	M1 Express at least 1 st two and last two terms using (i)
	A1 1 st two terms correct
	A1 Last two terms correct
	M1 Show that correct terms cancel
$\frac{3}{2} - \frac{1}{n} - \frac{1}{(n+1)}$	A1 5 Obtain correct answer, a.e.f. in terms of <i>n</i>
(iii)	B1ft Sum to infinity stated or implied or start at 1000 as in (ii)
	M1 S_{∞} – their (ii) with $n = 999$ or 1000 or show correct cancelling
<u>1999</u> 999000	A1 3 Obtain correct answer, a.e.f.
	(condone 0.002)

РМТ

РМТ

PMT

(Q7, June 2011)

27 $\frac{1}{4}n^{2}(n+1)^{2} - \frac{3}{2}n(n+1)$ $\frac{1}{4}n(n+1)(n+3)(n-2)$	M1 DM1 A1 M1 A1 A1 [6]	Express as difference of two series Use standard series results Obtain correct unsimplified answer Attempt to factorise At least factor of $n(n + 1)$ Obtain correct answer	From their unsimplified answer
--	--	--	--------------------------------

28 _(i)		M1 A1 [2]	Combine with a common denominator Obtain given answer correctly	
(ii)	$\frac{n}{n+1}$	M1 A1 M1 A1 [4]	Express terms using (i) At least 1^{st} two and last two correct Show terms cancelling Obtain correct answer, in terms of <i>n</i>	
(iii)	$1 - \frac{n}{n+1}$	B1 B1FT [2]	$\lim_{n \to \infty} \frac{n}{n+1} = 1$ This value – (ii)	
			×××	(Q8, Jan 20

(Q8, Jan 2012)

_

	29		M1	Express as sum of 3 series
MT			M1	Use standard series results, at least 1 correct
			A1	Two terms correct
		$\frac{1}{2}n(n+1)(2n+1) - \frac{3}{2}n(n+1) + 2n$	A1	Third term correct
			M1	Obtain factor of <i>n</i>
		$n(n^2 + 1)$	A2	Obtain correct answer c.a.o.
				Allow A1 for $\frac{1}{2(2n^2 + 2)}$
			[7]	

(Q4, June 2012)

	30	(i)		B1	Show given answer correctly
				[1]	
		(ii)		M1	Express terms as differences using (i)
				M1	Attempt this for at least first 3 terms
				A1	First 3 terms all correct
				A1	Last 2 terms correct
				M1	Show terms cancelling
			$1 + \frac{1}{1} - \frac{1}{1} - \frac{1}{1}$	A1	Obtain correct answer, must be in terms of n
			1 + 2 - n + 1 - n + 2		
				[6]	
1011		(iii)	3	B1ft	State or use correct sum to infinity
			$\overline{2}$		
				B1	11
					Their sum to infinity – their (ii) = $\overline{30}$
				M1	Attempt to solve correct equation
			N = 4	A1	Obtain only $N = 4$
				[4]	

⁽Q8, June 2012)

PMT	31	$\frac{1}{6}n(n+1)(2n+1) - n$	M1* DM1 A1	Attempt to expand $(r-1)(r+1)$ Use standard result for $\sum r^2$ Obtain correct unsimplified answer	
		$\frac{1}{6}n(2n+5)(n-1)$	DM1 A2 [6]	Attempt to factorise Obtain completely correct answer Allow A1 if one bracket still contains a common factor	

(Q2, Jan 2013)

		+		
32	(i)		M1	Obtain correct numerator from addition or partial fractions
			A1	Obtain given answer correctly
			[2]	
	(ii)		M1	Express at least three relevent terms using (i)
			A1	1 st three terms correct
		n	A1	Last two terms correct
		$\overline{(n+1)(n+2)}$		
			M1	Show correct cancelling
			A1	Obtain given answer correctly
			[5]	
	(iii)	1	M1	Sum 1 to ∞ - 1 st term or start process at $r = 2$
		$-\frac{-}{6}$	A1	Obtain correct answer
	1		[2]	

(Q8, Jan 2013)

	\sum +		
33	$\frac{1}{4 \times \frac{1}{n^2} (n+1)^2} - \frac{3}{4 \times \frac{1}{n^2} (n+1)(2n+1)} + \frac{1}{2} n(n+1)$	M1	Express as sum of three series Σ
	$-\frac{1}{2}$	A1	Obtain 2 correct (unsimplified) terms $\alpha \qquad \Delta^{\alpha}$
		A1	Obtain correct 3 rd (unsimplified) term
	$n^{3}(n+1)$	M1	Attempt to factorise, at least factor of <i>n</i>
		A2	Obtain correct answer, A1 if not fully factorised
		[6]	<i>x</i> =

=

		-		
34	(i)	-	M1	Use correct denominator or partial fractions
_		$\pi \leq$	A1	Obtain given answer convincingly
			[2]	
	(ii)		M1	Express at least 1 st two and last term using (i)
			A1	All terms correct
			M1	Show correct terms cancelling
		$\frac{1}{2} - \frac{1}{6n+2}$	A1	Obtain correct unsimplified answer
		_	M1	Include $\frac{1}{3}$ and combine their sum as a single fraction
			A1	Obtain given answer
			[6]	

(Q9, June 2013)

PhysicsAndMathsTutor.com