OCR Maths FP1

Topic Questions from Papers

Summation of Series

Answers

$\mathbf{1}$	$6 \Sigma r^{2}+2 \Sigma r+\Sigma 1$ $6 \Sigma r^{2}=n(n+1)(2 n+1)$ $2 \Sigma r=n(n+1)$	A1		Consider the sum of three separate terms
$\Sigma 1=n$	A1		Correct formula stated	
A1		Correct formula stated		
$n\left(2 n^{2}+4 n+3\right)$	M1	6	Correct term seen Correct algebraic processes including factorisation and simplification Obtain given answer correctly	

\begin{tabular}{|c|c|c|c|c|}
\hline 2 \& \begin{tabular}{l}
(i) \(\begin{gathered}\frac{(r+1)^{2}-r(r+2)}{(r+2)(r+1)} \\ \\ \\ \\ (r+1)(r+2)\end{gathered}\) \\
(ii) EITHER
\[
\begin{aligned}
\& \frac{2}{3}-\frac{1}{2}+\frac{3}{4}-\frac{2}{3} \cdots \frac{n+1}{n+2}-\frac{n}{n+1} \\
\& \frac{n+1}{n+2}-\frac{1}{2}
\end{aligned}
\] \\
OR \\
(iii) \(\frac{1}{2}\)
\end{tabular} \& \begin{tabular}{l}
M1
A1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1 \\
M2 \\
A1A1 \\
B1 ft
\end{tabular} \& 4

1

7 \& | Show correct process for subtracting fractions |
| :--- |
| Obtain given answer correctly |
| Express terms as differences using (i) |
| At least first two and last term correct |
| Show or imply that pairs of terms cancel |
| Obtain correct answer in any form |
| State that $\sum_{r=1}^{n} u_{r}=f(n+1)-f(1)$ |
| Each term correct |
| Obtain value from their sum to n terms |

\hline
\end{tabular}

(Q5, June 2005)

$3 \Sigma r^{3}-6 \Sigma r^{2}+2 \Sigma r$		M1		Consider the sum of three separate terms
$8 \Sigma r^{3}=2 n^{2}(n+1)^{2}$		A1		A1
$6 \Sigma r^{2}=n(n+1)(2 n+1)$		A1		Correct formula stated or used a.e.f. Correct formula stated or used a.e.f. Correct term seen
$2 \Sigma r=n(n+1)$	AG	M1	6	Attempt to factorise or expand and simplify A1
$2 n^{3}(n+1)$	6	Obtain given answer correctly		

(Q9, Jan 2006)

5	$\Sigma r^{3}+\Sigma r^{2}$	M1		Consider the sum as two separate parts
$\Sigma r^{2}=\frac{1}{6} n(n+1)(2 n+1)$	A1		Correct formula stated	
$\Sigma r^{3}=\frac{1}{4} n^{2}(n+1)^{2}$	A1		Correct formula stated	
$\frac{1}{12} n(n+1)(n+2)(3 n+1)$	M1		A1 Attempt to factorise and simplify or expand both expressions Obtain given answer correctly or complete verification	

(Q9, June 2006)

(Q8, Jan 2007)

9	$3 \Sigma r^{2}-3 \Sigma r+\Sigma 1$	M1		Consider the sum of three separate terms
$3 \Sigma r^{2}=\frac{1}{2} n(n+1)(2 n+1)$	A1			
$3 \Sigma r=\frac{3}{2} n(n+1)$	A1			
		A1		Correct formula stated formula stated Correct term seen Attempt to simplify Obtain given answer correctly
$n^{3} 1=n$	M1	6	$\mathbf{6}$	

(Q3, June 2007)

10	(i) $\frac{1}{r(r+1)}$ (ii) $1-\frac{1}{n+1}$ (iii) $\begin{aligned} & S_{\infty}=1 \\ & \frac{1}{n+1} \end{aligned}$	B1 M1 M1 A1 B1ft M1 A1 c.a.o.	7	Show correct process to obtain given result Express terms as differences using (i) Show that terms cancel Obtain correct answer, must be n not any other letter State correct value of sum to infinity Ft their (ii) Use sum to infinity - their (ii) Obtain correct answer a.e.f.

$\mathbf{1 1}$	$\frac{a}{6} n(n+1)(2 n+1)+b n$	M1		Consider sum as two separate parts Correct answer a.e.f. A1 $a=6 \quad b=-3$

(Q2, Jan 2008)

12	(i)		M1		Attempt to combine 3 fractions
			A1	2	Obtain given answer correctly
	(ii)		M1		Express at least first 3 terms using (i)
			A1		All terms correct
			M1		Express at least last 2 terms using (i)
			A1		All terms correct in terms of n
		$2+1-\frac{1}{2}-\frac{2}{n+1}-\frac{1}{n+2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	6	Show that correct terms cancel Obtain unsimplified correct answer
	(iii)	$\frac{5}{2}$	B1ft	1	Obtain correct answer from their (ii)
	(iv)	$\frac{2}{N+1}+\frac{1}{N+2}=\frac{7}{10}$	B1ft		Their (iii) - their (ii)
		$7 N^{2}-9 N-36=0$	M1		Attempt to clear fractions \& solve equation, Obtain correct simplified equation
		$N=3$	$\begin{array}{\|l} \hline \text { A1 } \\ \text { A1 } \end{array}$		Obtain only the correct answer
				$\begin{gathered} 4 \\ 13 \end{gathered}$	

(Q10, Jan 2008)

(Q3, June 2008)

M1 Express as difference of two series
M1 Use standard results
A1 Correct unsimplified answer
M1 Attempt to factorise
A1 At least factor of $n(n+1)$
A1 Obtain correct answer
(Q5, June 2008)

15		M1		Express as sum of 3 terms
	$n^{2}(n+1)^{2}+n(n+1)(2 n+1)+n(n+1)$	A1		2 correct unsimplified terms
		A1		$3^{\text {rd }}$ correct unsimplified term
	$n(n+1)^{2}(n+2)$	M1		Attempt to factorise
		A1ft		Two factors found, ft their quartic
		A1	6	Correct final answer a.e.f.

(Q3, Jan 2009)

16	(i)	M1	2	Use correct denominator
		A1		Obtain given answer correctly
	(ii)	M1		Express terms as differences using (i)
		M1		Do this for at least ${ }^{\text {st }} 3$ terms
		A1		First 3 terms all correct
		A1		Last 3 terms all correct (in terms or n or r)
	+ $\frac{1}{3}-\frac{1}{2 n-1}-\frac{1}{2 n+1}$	M1		Show pairs cancelling
		A1	6	Obtain correct answer, a.e.f.(in terms of n)
	(iii) $\frac{4}{3}$	B1ft	1	Given answer deduced correctly, ft their (ii)

(Q9, Jan 2009)

$\mathbf{1 7}$		B1		State correct value of S_{250} or S_{100} Subtract $S_{250}-S_{100}\left(\right.$ or S_{101} or $\left.S_{99}\right)$ $\mathbf{9 8 4 3 9 0 6 2 5 - 2 5 5 0 2 5 0 0 = 9 5 8 8 8 8 1 2 5}$

(Q7, June 2009)

19
M1 Express as sum of three series

$$
\begin{aligned}
& \frac{1}{4} n^{2}(n+1)^{2}-\frac{1}{6} n(n+1)(2 n+1)-n(n+1) \\
& \frac{1}{12} n(n+1)(n+2)(3 n-7)
\end{aligned}
$$

Obtain correct unsimplified answer
M1 Attempt to factorise
Obtain at least factor of $n(n+1)$
A1 6 Obtain fully factorised correct answer
6
(Q4, Jan 2010)

20 (i)	B1	1	Obtain given answer correctly
(ii)	M1		Express at least $1^{\text {st }}$ two and last term using (i)
	A1		All terms correct
	M1		Show that correct terms cancel
$1-\frac{1}{(n+1)^{2}}$	A1	4	Obtain correct answer, in terms of n
(iii) $\frac{1}{4}$	B1		Sum to infinity seen or implied
		2	Obtain correct answer S.C. $-3 / 4$ scores B1
	7		

21

$$
\begin{aligned}
& \text { Either } \\
& \frac{2}{3} n(n+1)(2 n+1)-2 n(n+1)+n \\
& \frac{1}{3} n(2 n-1)(2 n+1) \\
& \text { Or } \\
& \sum_{r=1}^{2 n} r^{2}-4 \sum_{r=1}^{n} r^{2} \\
& \frac{1}{6} \times 2 n(2 n+1)(4 n+1)-4 \times \frac{1}{6} n(n+1)(2 n+1) \\
& \frac{1}{3} n(2 n-1)(2 n+1)
\end{aligned}
$$

M1 Express as a sum of 3 terms
M1 Use standard sum results

A1 Correct unsimplified answer

M1 Attempt to factorise
A1 Obtain at least factor of n and a quadratic
A1 6 Obtain correct answer a.e.f.

M1 Express as difference of $2 \sum r^{2}$ series
M1 Use standard result
A1 Correct unsimplified answer
M1 Attempt to factorise
A1 \quad Obtain at least factor of n

A1 Obtain correct answer
6

22 (i)

M1 Attempt to rationalise denominator or cross multiply
A1 2 Obtain given answer correctly
(ii)

M1 Express terms as differences using (i)
M1 Attempt this for at least $1^{\text {st }}$ three terms
A1 $\quad 1^{\text {st }}$ three terms all correct
A1 Last two terms all correct
M1 Show pairs cancelling
$\frac{1}{2}(\sqrt{n+2}+\sqrt{n+1}-\sqrt{2}-1)$
A1 6 Obtain correct answer, in terms of n

B1 1 Sensible statement for divergence 9

23	Either	B1	Correct value for $\sum r$ stated or used
		M1	Express as sum of two series
	$\frac{a}{4} n^{2}(n+1)^{2}+\frac{b n}{2}(n+1)$	A1	Obtain correct unsimplified answer
		M1	Compare coefficients or substitute values for n
	$\begin{aligned} & a=4 \quad b=-4 \\ & \boldsymbol{O r} \end{aligned}$	A1 A16	Obtain correct answers
		M1	Use 2 values for n
	$a+b=04 a+b=12$	A1 A1	Obtain correct equations
		M1	Solve simultaneous equations
	$a=4 \quad b=-4$	A1 A1	Obtain correct answers
		6	

(Q4, Jan 2011)

24 (i)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Use correct denominator Obtain given answer correctly
(ii)	M1		Express terms as differences using (i)
	M1		Do this for at least 3 terms
	A1		First 3 terms all correct
	A1		Last 2 terms all correct
$\frac{1}{2}-\frac{1}{n+1}+\frac{1}{n+2}$	M1		Show relevant cancelling
	A1	6	Obtain correct answer a.e.f.
(iii) $\begin{aligned} & \frac{1}{2} \\ & \\ & \frac{1}{n+1}-\frac{1}{n+2}\end{aligned}$	B1ft		S_{∞} stated or start at $n+1$ as in (ii)
			S_{∞} stated or stat at $n+1$ as in (if)
	M1		S_{∞} - their (ii) or show correct cancelling
1	A1	3	Obtain given answer correctly
$(n+1)(n+2)$			Oblan given answer correcly

(Q10, Jan 2011)

25

$$
\begin{aligned}
& 3 \times \frac{1}{6} \times 2 n(2 n+1)(4 n+1)-\frac{1}{2} \times 2 n \\
& 2 n^{2}(4 n+3)
\end{aligned}
$$

M1	Express as sum of two series
A1 A1	Each term correct a.e.f.
M1	Attempt to factorise
A2	$\mathbf{6}$
Completely correct answer,	
6	

26 (i)

B1 1 Obtain given answer correctly
(ii)

M1 Express at least $1^{\text {st }}$ two and last two terms using (i)
A1 $\quad 1^{\text {st }}$ two terms correct
A1 Last two terms correct
M1 Show that correct terms cancel
$\frac{3}{2}-\frac{1}{n}-\frac{1}{(n+1)}$
A1 5 Obtain correct answer, a.e.f. in terms of n
(iii)

B1ft
Sum to infinity stated or implied or start at 1000 as in (ii)
M1 $\quad S_{\infty}$ - their (ii) with $n=999$ or 1000 or show correct cancelling
$\frac{1999}{999000}$

A1 3 Obtain correct answer, a.e.f.
(condone 0.002)

9

(Q4, Jan 2012)

28	(i)		$\begin{gathered} \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	Combine with a common denominator Obtain given answer correctly	
	(ii)	$\frac{n}{n+1}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [4] } \end{aligned}$	Express terms using (i) At least $1^{\text {st }}$ two and last two correct Show terms cancelling Obtain correct answer, in terms of n	
	(iii)	$1-\frac{n}{n+1}$	$\begin{gathered} \text { B1 } \\ \text { B1FT } \\ {[2]} \end{gathered}$	$\lim _{n \rightarrow \infty} \frac{n}{n+1}=1$ This value - (ii)	

(Q4, June 2012)

30	(i)		$\begin{aligned} & \hline \text { B1 } \\ & {[1]} \end{aligned}$	Show given answer correctly	
	(ii)	$1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}$	M1 M1 A1 A1 M1 A1 [6]	Express terms as differences using (i) Attempt this for at least first 3 terms First 3 terms all correct Last 2 terms correct Show terms cancelling Obtain correct answer, must be in terms of n	
	(iii)	$\frac{3}{2}$ $N=4$	$\begin{aligned} & \text { B1ft } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	State or use correct sum to infinity Their sum to infinity - their $($ ii $)=\frac{\mathbf{1 1}}{\mathbf{3 0}}$ Attempt to solve correct equation Obtain only $N=4$	

(Q8, June 2012)

31			$\begin{aligned} & \frac{1}{6} n(n+1)(2 n+1)-n \\ & \frac{1}{6} n(2 n+5)(n-1) \end{aligned}$	M1* DM1 A1 DM1 A2 [6]	Attempt to expand $(r-1)(r+1)$ Use standard result for $\sum r^{2}$ Obtain correct unsimplified answer Attempt to factorise Obtain completely correct answer Allow A1 if one bracket still contains a common factor

(Q2, Jan 2013)

32	(i)		$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ {[2]} \\ \hline \end{gathered}$	Obtain correct numerator from addition or partial fractions Obtain given answer correctly
	(ii)	$\frac{n}{(n+1)(n+2)}$	M1 A1 A1 M1 A1 [5]	Express at least three relevent terms using (i) $1^{\text {st }}$ three terms correct Last two terms correct Show correct cancelling Obtain given answer correctly
	(iii)	$-\frac{1}{6}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Sum 1 to $\infty-1^{\text {st }}$ term or start process at $r=2$ Obtain correct answer

$4 \times \frac{1}{4} n^{2}(n+1)^{2}-3 \times \frac{1}{6} n(n+1)(2 n+1)+\frac{1}{2} n(n+1)$

M1	Express as sum of three series
A1	Obtain 2 correct (unsimplified) terms
A1	Obtain correct $3^{\text {rd }}$ (unsimplified) term
M1	Attempt to factorise, at least factor of n
A2	Obtain correct answer, A1 if not fully factorised
$[6]$	

(Q5, June 2013)

34	(i)		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$	Use correct denominator or partial fractions Obtain given answer convincingly
	(ii)	$\frac{1}{2}-\frac{1}{6 n+2}$	M1 A1 M1 A1 M1 A1 [6]	Express at least $1^{\text {st }}$ two and last term using (i) All terms correct Show correct terms cancelling Obtain correct unsimplified answer Include $\frac{1}{3}$ and combine their sum as a single fraction Obtain given answer

